An easy guide to the history of Artificial Intelligence

Source: Deep Learning on Medium

An easy guide to the history of Artificial Intelligence

A quick look at some of the most critical events in AI since its beginning and some interesting links.

If we start to coming back in history… until the ancient Greek, we can discover that intelligent machines and artificial beings first appeared as myths of Antiquity.

Aristotle’s development of the syllogism and its use of deductive reasoning was a crucial moment in mankind’s quest to understand its own intelligence.

But when it comes to AI and Machine Learning, we don’t go so far with the memory because the history of artificial intelligence as we think of it today spans less than a century.

I want to share here a quick look at some of the most critical events in AI since its beginning and some interesting links.

1943

Warren McCullough and Walter Pitts published “A Logical Calculus of Ideas Immanent in Nervous Activity.” The paper proposed the first mathematic model for building a neural network.

1949

In his book The Organization of Behavior: A Neuropsychological Theory, Donald Hebb offers the theory that neural pathways are created from experiences and that connections between neurons become stronger the more frequently they’re used. Hebbian learning continues to be an essential model in AI.

1950

Alan Turing publishes “Computing Machinery and Intelligence, proposing what is now known as the Turing Test, a method for determining if a machine is intelligent.

Harvard undergraduates Marvin Minsky and Dean Edmonds build SNARC, the first neural network computer.

Claude Shannon publishes the paper “Programming a Computer for Playing Chess.”

Isaac Asimov publishes the “Three Laws of Robotics.

1952

Arthur Samuel develops a self-learning program to play checkers.

1954

The Georgetown-IBM machine translation experiment automatically translates 60 carefully selected Russian sentences into English.

1956

The phrase artificial intelligence is coined at the “Dartmouth Summer Research Project on Artificial Intelligence.” Led by John McCarthy, the conference, which defined the scope and goals of AI, is widely considered to be the birth of artificial intelligence as we know it today.

Allen Newell and Herbert Simon demonstrate Logic Theorist (LT), the first reasoning program.

1958

John McCarthy develops the AI programming language Lisp and publishes the paper “Programs with Common Sense.” The paper proposed the hypothetical Advice Taker, a complete AI system with the ability to learn from experience as effectively as humans do.

1959

Allen Newell, Herbert Simon, and J.C. Shaw develop the General Problem Solver (GPS), a program designed to imitate human problem-solving.

Herbert Gelernter develops the Geometry Theorem Prover program.

Arthur Samuel coins the term machine learning while at IBM.

John McCarthy and Marvin Minsky found the MIT Artificial Intelligence Project.

1963

John McCarthy starts the AI Lab at Stanford.

1966

The Automatic Language Processing Advisory Committee (ALPAC) report by the U.S. government details the lack of progress in machine translation research, a major Cold War initiative with the promise of automatic and instantaneous translation of Russian. The ALPAC report leads to the cancellation of all government-funded MT projects.

1969

The first successful expert systems are developed in DENDRAL, a XX program, and MYCIN, designed to diagnose blood infections, are created at Stanford.

1972

The logic programming language PROLOG is created.

1973

The “Lighthill Report,” detailing the disappointments in AI research, is released by the British government and leads to severe cuts in funding for artificial intelligence projects.

1974–1980

Frustration with the progress of AI development leads to major DARPA cutbacks in academic grants. Combined with the earlier ALPAC report and the previous year’s “Lighthill Report,” artificial intelligence funding dries up and research stalls. This period is known as the “First AI Winter.

1980

Digital Equipment Corporations develop R1 (also known as XCON), the first successful commercial expert system. Designed to configure orders for new computer systems, R1 kicks off an investment boom in expert systems that will last for much of the decade, effectively ending the first “AI Winter.”

1982

Japan’s Ministry of International Trade and Industry launches the ambitious Fifth Generation Computer Systems project. The goal of FGCS is to develop supercomputer-like performance and a platform for AI development.

1983

In response to Japan’s FGCS, the U.S. government launches the Strategic Computing Initiative to provide DARPA funded research in advanced computing and artificial intelligence.

1985

Companies are spending more than a billion dollars a year on expert systems, and an entire industry known as the Lisp machine market springs up to support them. Companies like Symbolics and Lisp Machines Inc. build specialized computers to run on the AI programming language Lisp.

1987–1993

As computing technology improved, cheaper alternatives emerged, and the Lisp machine market collapsed in 1987, ushering in the “Second AI Winter.” During this period, expert systems proved too expensive to maintain and update, eventually falling out of favor.

Japan terminates the FGCS project in 1992, citing failure in meeting the ambitious goals outlined a decade earlier.

DARPA ends the Strategic Computing Initiative in 1993 after spending nearly $1 billion and falling far short of expectations.

1991

U.S. forces deploy DART, an automated logistics planning and scheduling tool, during the Gulf War.

1997

IBM’s Deep Blue beats world chess champion, Gary Kasparov

2005

STANLEY, a self-driving car, wins the DARPA Grand Challenge.

The U.S. military begins investing in autonomous robots like Boston Dynamic’s “Big Dog” and iRobot’s “PackBot.”

2008

Google makes breakthroughs in speech recognition and introduces the feature in its iPhone app.

2011

IBM’s Watson trounces the competition on Jeopardy!

2012

Andrew Ng, the founder of the Google Brain Deep Learning project, feeds a neural network using deep learning algorithms 10 million YouTube videos as a training set. The neural network learned to recognize a cat without being told what a cat is, ushering in a breakthrough era for neural networks and deep learning funding.

2014

Google makes the first self-driving car to pass a state driving test.

2016

Google DeepMind’s AlphaGo defeats world champion Go player Lee Sedol. The complexity of the ancient Chinese game was seen as a significant hurdle to clear in AI.

2017

In October 2017, Sophia, a social humanoid robot developed by Hong-Kong based company Hanson Robotics, became the first robot to receive citizenship of any country and named the United Nations Development Programme’s first-ever Innovation Champion and is the first non-human to be given any United Nations title.

2018

Jair Ribeiro leaves IBM to become a Senior AI Business Analyst at the AI & ML Center of Excellence in Volvo Group — maybe one day it will be written in the books of history. 🙂

2019 — Yoshua Bengio, Geoffrey Hinton, and Yann LeCun, the godfather of the modern AI, won the Turin Award for their work developing the AI subfield of deep learning.

2020

What breakthrough in 2020 do you think will enter to this list?