The diagnostic accuracy of artificial intelligence in thoracic diseases: A protocol for systematic review and meta-analysis. – Physician’s Weekly

Source: artificial intelligence

Thoracic diseases include a variety of common human primary malignant tumors, among which lung cancer and esophageal cancer are among the top 10 in cancer incidence and mortality. Early diagnosis is an important part of cancer treatment, so artificial intelligence (AI) systems have been developed for the accurate and automated detection and diagnosis of thoracic tumors. However, the complicated AI structure and image processing made the diagnosis result of AI-based system unstable. The purpose of this study is to systematically review published evidence to explore the accuracy of AI systems in diagnosing thoracic cancers.
We will conduct a systematic review and meta-analysis of the diagnostic accuracy of AI systems for the prediction of thoracic diseases. The primary objective is to assess the diagnostic accuracy of thoracic cancers, including assessing potential biases and calculating combined estimates of sensitivity, specificity, and area under the receiver operating characteristic curve (AUC). The secondary objective is to evaluate the factors associated with different models, classifiers, and radiomics information. We will search databases such as PubMed/MEDLINE, Embase (via OVID), and the Cochrane Library. Two reviewers will independently screen titles and abstracts, perform full article reviews and extract study data. We will report study characteristics and assess methodological quality using the Quality Assessment of Diagnostic Accuracy Studies 2 (QUADAS-2) tool. RevMan 5.3 and Meta-disc 1.4 software will be used for data synthesis. If pooling is appropriate, we will produce summary receiver operating characteristic (SROC) curves, summary operating points (pooled sensitivity and specificity), and 95% confidence intervals around the summary operating points. Methodological subgroup and sensitivity analyses will be performed to explore heterogeneity.
CRD42019135247.